Part Number Hot Search : 
302MR UMZ30N DTA12 PE3321LF SKKQ230 EPIH8D43 D71054GB FSS9230R
Product Description
Full Text Search
 

To Download LT1789IS8-10 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  1 lt1789-1/lt1789-10 1789f features applicatio s u descriptio u typical applicatio u micropower, single supply rail-to-rail output instrumentation amplifiers the lt ? 1789-1/lt1789-10 are micropower, precision in- strumentation amplifiers that are optimized for single supply operation from 2.2v to 36v. the quiescent current is 95 m a max, the inputs common mode to ground and the output swings within 110mv of ground. the gain is set with a single external resistor for a gain range of 1 to 1000 for the lt1789- 1 and 10 to 1000 for the lt1789-10. the high accuracy of the lt1789-1 (40ppm maximum nonlinearity and 0.25% max gain error) is unmatched by other micropower instrumentation amplifiers. the lt1789-10 maximizes both the input common mode range and dynamic output range when an amplification of 10 or greater is required, allowing precise signal processing where other instrumentation amplifiers fail to operate. the lt1789-1/ lt1789-10 are laser trimmed for very low input offset voltage, low input offset voltage drift, high cmrr and high psrr. the output can handle capacitive loads up to 400pf (lt1789-1), 1000pf (lt1789-10) in any gain configuration while the inputs are esd protected up to 10kv (human body). the lt1789-1/lt1789-10 are offered in the 8-pin so pack- age, requiring significantly less pc board area than discrete multi op amp and resistor designs. n micropower: 95 m a supply current max n low input offset voltage: 100 m v max n low input offset voltage drift: 0.5 m v/ c max n single gain set resistor: g = 1 to 1000 (lt1789-1) g = 10 to 1000 (lt1789-10) n inputs common mode to v C n wide supply range: 2.2v to 36v total supply n cmrr at g = 10: 96db min n gain error: g = 10, 0.25% max n gain nonlinearity: g = 10, 40ppm max n input bias current: 40na max n psrr at g = 10: 100db min n 1khz voltage noise: 48nv/ ? hz n 0.1hz to 10hz noise: 1.5 m v p-p , ltc and lt are registered trademarks of linear technology corporation. n portable instrumentation n bridge amplifiers n strain gauge amplifiers n thermocouple amplifiers n differential to single-ended converters n medical instrumentation 0.5a to 4a voltage controlled current source 5 7 v s 4 * ensure adequate power dissipation capability at higher voltages, currents and duty cycles i load r load * 1789 ta01 r sense * 0.1 tip127* 6 3 2 r4 10k c2 3300pf r3 100 c3 0.1 f 2 1 3 8 c1 4700pf v in 7 r2 10k 6 v s 4 5 r1 90.9k 4 3 2 1 + 120 8k v s v s = 3.3v to 32v = 1a per volt as shown i load = rise time 250 s, 10% to 90%, 1a to 2a output step into 0.25 load v in r sense ?10 lt1636 + ref lt1789-1
2 lt1789-1/lt1789-10 1789f order part number s8 part marking lt1789cs8-1 lt1789is8-1 lt1789cs8-10 LT1789IS8-10 17891 1789i1 178910 789i10 t jmax = 150 c, q ja = 190 c/ w v s = 3v, 0v; v s = 5v, 0v; r l = 20k, v cm = v ref = half supply, t a = 25 c, unless otherwise noted. (note 1) supply voltage (v + to v C ) ........................................ 36v input differential voltage ......................................... 36v input current (note 3) ........................................ 20ma output short-circuit duration .......................... indefinite operating temperature range ................ C 40 c to 85 c specified temperature range (note 4) lt1789c-1, lt1789c-10 .................... C 40 c to 85 c lt1789i-1, lt1789i-10 ...................... C 40 c to 85 c storage temperature range ................. C 65 c to 150 c lead temperature (soldering, 10 sec).................. 300 c absolute axi u rati gs w ww u package/order i for atio uu w 1 2 3 4 8 7 6 5 top view r g +v s out ref r g ?n +in ? s s8 package 8-lead plastic so consult ltc marketing for parts specified with wider operating temperature ranges. 3v and 5v electrical characteristics lt1789-1 lt1789-10 symbol parameter conditions min typ max min typ max units g gain range lt1789-1, g = 1 + (200k/r g ) 1 1000 lt1789-10, g = 10 ? [1+ (200k/r g )] 10 1000 gain error (note 6) g = 1, v o = 0.1v to (+v s ) C 1v 0.02 0.20 % lt1789-1, v o = 0.1v to (+v s ) C 0.3v lt1789-10, v o = 0.2v to (+v s ) C 0.3v g = 10, (note 2) 0.06 0.25 0.01 0.25 % g = 100, (note 2) 0.06 0.27 0.09 0.30 % g = 1000, (note 2) 0.13 0.16 % gain nonlinearity (note 6) g = 1, v o = 0.1v to (+v s ) C 1v 35 100 ppm lt1789-1, v o = 0.1v to (+v s ) C 0.3v lt1789-10, v o = 0.2v to 4.7v, v s = 5v (note 8) g = 10 12 40 15 100 ppm g = 100 18 75 20 100 ppm g = 1000 90 100 ppm v ost total input referred offset voltage v ost = v osi + v oso /g v osi input offset voltage g = 1000 15 100 20 160 m v v oso output offset voltage g = 1 (lt1789-1), g =10 (lt1789-10) 150 750 650 3000 m v i os input offset current (note 6) 0.2 4 0.2 4 na i b input bias current (note 6) 19 40 19 40 na e n input noise voltage, g = 1, f o = 0.1hz to 10hz 5.0 m v p-p rti (referred to input) g = 10 1.5 4.6 m v p-p g = 100, 1000 1.0 1.1 m v p-p
3 lt1789-1/lt1789-10 1789f v s = 3v, 0v; v s = 5v, 0v; r l = 20k, v cm = v ref = half supply, t a = 25 c, unless otherwise noted. 3v and 5v electrical characteristics lt1789-1 lt1789-10 symbol parameter conditions min typ max min typ max units total rti noise = ? e ni 2 + (e no /g) 2 e ni input noise voltage density, f o = 1khz (note 7) 48 85 52 90 nv/ ? hz rti e no output noise voltage density, f o = 1khz (note 3) 330 270 nv/ ? hz rti i n input noise current f o = 0.1hz to 10hz 16 16 pa p-p input noise current density f o = 1khz 62 62 fa/ ? hz r in input resistance v in = 0v to (+v s ) C 1v (note 6) 0.75 1.6 0.75 1.6 g w c in input capacitance differential 1.6 1.6 pf common mode 1.6 1.6 pf v cm input voltage range 0 +v s C 1 0 +v s C 1.2 v cmrr common mode rejection ratio 1k source imbalance, (note 6) lt1789-1,v cm = 0v to (+v s )C1v lt1789-10, v cm = 0v to (+v s )C1.2v g = 1 79 88 db g = 10 96 106 88 105 db g = 100 100 114 98 113 db g = 1000 100 114 98 113 db psrr power supply rejection ratio v s = 2.5v to 12.5v, v cm = v ref = 1v g = 1 90 100 db g = 10 100 113 94 109 db g = 100 102 116 102 120 db g = 1000 102 116 102 120 db minimum supply voltage 2.2 2.5 2.2 2.5 v i s supply current (note 7) 67 95 67 95 m a v ol output voltage swing low (note 7) 54 100 62 110 mv v oh output voltage swing high (note 7) +v s C 0.3 +v s C 0.19 +v s C 0.3 +v s C 0.19 v i sc short-circuit current short to gnd 2.2 2.2 ma short to +v s 8.5 8.5 ma bw bandwidth g = 1 60 khz g = 10 30 25 khz g = 100 3 12 khz g = 1000 0.2 1.5 khz sr slew rate g = 10, v out = 0.5v to 4.5v 0.023 0.062 v/ m s settling time to 0.01% 4v step 240 190 m s r refin reference input resistance 220 220 k w i refin reference input current v ref = 0v 2.7 2.7 m a av ref reference gain to output 1 0.0001 1 0.0001
4 lt1789-1/lt1789-10 1789f electrical characteristics the l denotes the specifications which apply over the temperature range of 0 c t a 70 c. v s = 3v, 0v; v s = 5v, 0v; r l = 20k, v ref = half supply, unless otherwise noted. (note 4) lt1789-1 lt1789-10 symbol parameter conditions min typ max min typ max units gain error (note 6) g = 1, v o = 0.3v to (+v s ) C 1v l 0.25 % v o = 0.3v to (+v s ) C 0.5v g = 10 (note 2) l 0.53 0.30 % g = 100 (note 2) l 0.55 0.53 % gain nonlinearity (note 6) g = 1, v o = 0.3v to (+v s ) C 1v l 185 ppm lt1789-1, v o = 0.3v to (+v s ) C 0.5v lt1789-10, v o = 0.3v to 4.7v, v s = 5v (note 8) g = 10 l 90 130 ppm g = 100 l 120 130 ppm g/t gain vs temperature g < 1000 (notes 2, 3) l 5 50 5 50 ppm/ c v ost total input referred offset voltage v ost = v osi + v oso /g v osi input offset voltage g = 1000 l 150 190 m v v osih input offset voltage hysteresis (notes 3, 5) l 310 310 m v v oso output offset voltage g = 1 (lt1789-1), g = 10 (lt1789-10) l 950 3700 m v v osoh output offset voltage hysteresis (notes 3, 5) l 50 100 300 900 m v v osi /t input offset voltage drift (rti) (note 3) l 0.2 0.5 0.3 0.7 m v/ c v oso /t output offset voltage drift (note 3) l 1.5 4 7 20 m v/ c i os input offset current (note 6) l 4.5 4.5 na i os /t input offset current drift l 33pa/ c i b input bias current (note 6) l 45 45 na i b /t input bias current drift l 50 50 pa/ c v cm input voltage range l 0.2 (+v s ) C 1 0.2 (+v s ) C 1.5 v cmrr common mode rejection ratio 1k source imbalance, (note 6) lt1789-1, v cm = 0.2v to (+v s ) C 1v lt1789-10, v cm = 0.2v to (+v s ) C 1.5v g = 1 l 77 db g = 10 l 94 85 db g = 100, 1000 l 98 96 db psrr power supply rejection ratio v s = 2.5v to 12.5v, v cm = v ref = 1v g = 1 l 88 db g = 10 l 98 92 db g = 100, 1000 l 100 100 db minimum supply voltage l 2.5 2.5 v i s supply current (note 7) l 115 115 m a v ol output voltage swing low (note 7) l 110 120 mv v oh output voltage swing high (note 7) l +v s C 0.38 +v s C 0.38 v
5 lt1789-1/lt1789-10 1789f the l denotes the specifications which apply over the temperature range of C40 c t a 85 c. v s = 3v, 0v; v s = 5v, 0v; r l = 20k, v ref = half supply, unless otherwise noted. (note 4) electrical characteristics lt1789-1 lt1789-10 symbol parameter conditions min typ max min typ max units gain error (note 6) g = 1, v o = + 0.3v to (+v s ) C 1v l 0.30 % v o = 0.3v to (+v s ) C 0.5v g = 10 (note 2) l 0.57 0.35 % g = 100 (note 2) l 0.59 0.62 % gain nonlinearity (note 6) g = 1, v o = 0.3v to (+v s ) C 1v l 250 ppm lt1789-1, v o = 0.3v to (+v s ) C 0.5v lt1789-10, v o = 0.3v to 4.7v, v s = 5v (note 8) g = 10 l 105 150 ppm g = 100 l 160 170 ppm g/t gain vs temperature g < 1000 (notes 2, 3) l 5 50 5 50 ppm/ c v ost total input referred offset voltage v ost = v osi + v oso /g v osi input offset voltage g = 1000 l 175 205 m v v osih input offset voltage hysteresis (notes 3, 5) l 310 310 m v v oso output offset voltage g = 1 (lt1789-1), g = 10 (lt1789-10) l 1050 4000 m v v osoh output offset voltage hysteresis (notes 3, 5) l 50 100 300 900 m v v osi /t input offset voltage drift (rti) (note 3) l 0.2 0.5 0.3 0.7 m v/ c v oso /t output offset voltage drift (note 3) l 1.5 4 7 20 m v/ c i os input offset current (note 6) l 55na i os /t input offset current drift l 33pa/ c i b input bias current (note 6) l 50 50 na i b /t input bias current drift l 50 50 pa/ c v cm input voltage range l 0.2 +v s C 1 0.2 +v s C 1.5 v cmrr common mode rejection ratio 1k source imbalance, (note 6) lt1789-1 v cm = 0.2v to (+v s ) C 1v lt1789-10 v cm = 0.2v to (+v s ) C 1.5v g = 1 l 75 db g = 10 l 92 84 db g = 100, 1000 l 96 94 db psrr power supply rejection ratio v s = 2.5v to 12.5v, v cm = v ref = 1v g = 1 l 86 db g = 10 l 96 90 db g = 100, 1000 l 98 98 db minimum supply voltage l 2.5 2.5 v i s supply current (note 7) l 125 125 m a v ol output voltage swing low (note 7) l 120 130 mv v oh output voltage swing high (note 7) l +v s C 0.40 +v s C 0.40 v
6 lt1789-1/lt1789-10 1789f v s = 15v, r l = 20k, v cm = v out = 0v, t a = 25 c, unless otherwise noted. electrical characteristics lt1789-1 lt1789-10 symbol parameter conditions min typ max min typ max units g gain range lt1789-1, g = 1 + (200k/r g ) 1 1000 lt1789-10, g = 10 ? [1 + (200k/r g )] 10 1000 gain error v o = 10v g = 1 0.01 0.10 % g = 10 (note 2) 0.04 0.15 0.01 0.15 % g = 100 (note 2) 0.04 0.15 0.03 0.20 % g = 1000 (note 2) 0.07 0.20 0.03 0.25 % gain nonlinearity v o = 10v g = 1 8 20 ppm g = 10 1 10 5 40 ppm g = 100 6 20 5 40 ppm g = 1000 20 100 25 160 ppm v ost total input referred offset voltage v ost = v osi + v oso /g v osi input offset voltage g = 1000 30 235 30 295 m v v oso output offset voltage g = 1 (lt1789-1), g = 10 (lt1789-10) 200 1 0.6 3.3 mv i os input offset current 0.2 4 0.2 4 na i b input bias current 17 40 17 40 na e n input noise voltage, rti f o = 0.1hz to 10hz g = 1 5.0 m v p-p g = 10 1.5 4.6 m v p-p g = 100, 1000 1.0 1.1 m v p-p total rti noise = ? e ni 2 + (e no /g) 2 e ni input noise voltage density, rti f o = 1khz 49 90 53 95 nv/ ? hz e no output noise voltage density, rti f o = 1khz 330 270 nv/ ? hz i n input noise current f o = 0.1hz to 10hz 19 19 pa p-p input noise current density f o = 1khz 100 62 pa/ ? hz r in input resistance 2 4.7 2 4.7 g w c in input capacitance differential 20 20 pf common mode 17 17 pf v cm input voltage range C15 14 C15 14 v cmrr common mode rejection ratio 1k source imbalance, v cm = C15v to 14v g = 1 80 89 db g = 10 98 108 93 108 db g = 100, 1000 102 117 102 123 db psrr power supply rejection ratio lt1789-1, v s = 1.25v to 16v lt1789-10, v s = 1.50v to 16v g = 1 94 107 db g = 10 104 118 100 115 db g = 100, 1000 106 121 106 129 db minimum supply voltage 1.25 1.50 v i s supply current 85 130 85 130 m a v o output voltage swing 14.5 14.7 14.5 14.7 v i sc short-circuit current short to C v s 2.2 2.2 ma short to + v s 8.5 8.5 ma
7 lt1789-1/lt1789-10 1789f lt1789-1 lt1789-10 symbol parameter conditions min typ max min typ max units bw bandwidth g = 1 60 khz g = 10 30 25 khz g = 100 3 12 khz g = 1000 0.2 1.5 khz sr slew rate v out = 10v 0.012 0.026 0.028 0.066 v/ m s settling time to 0.01% 10v step 460 270 m s r refin reference input resistance 220 220 k w i refin reference input current v ref = 0 2.7 2.7 m a av ref reference gain to output 1 0.0001 1 0.0001 v s = 15v, r l = 20k, v cm = v out = 0v, t a = 25 c, unless otherwise noted. electrical characteristics the l denotes the specifications which apply over the temperature range of 0 c t a 70 c. v s = 15v, r l = 20k, v cm = v ref = 0v, unless otherwise noted. (note 4) lt1789-1 lt1789-10 symbol parameter conditions min typ max min typ max units gain error v o = 10v g = 1 l 0.15 % g = 10 (note 2) l 0.38 0.20 % g = 100 (note 2) l 0.38 0.43 % g = 1000 (note 2) l 0.43 0.48 % gain nonlinearity v o = 10v g = 1 l 25 ppm g = 10 l 15 45 ppm g = 100 l 25 45 ppm g = 1000 l 120 180 ppm g/t gain vs temperature g < 1000 (notes 2, 3) l 5 50 5 50 ppm/ c v ost total input referred offset voltage v ost = v osi + v oso /g v osi input offset voltage g = 1000 l 285 325 m v v osih input offset voltage hysteresis (notes 3, 5) l 830 830 m v v oso output offset voltage g = 1 l 1.2 4 mv v osoh output offset voltage hysteresis (notes 3, 5) l 50 120 400 1000 m v v osi /t input offset voltage drift (rti) (note 3) l 0.2 0.7 0.3 0.8 m v/ c v oso /t output offset voltage drift (note 3) l 1.5 5 8 22 m v/ c i os input offset current l 4.5 4.5 na i os /t input offset current drift l 22pa/ c i b input bias current l 45 45 na i b /t input bias current drift l 35 35 pa/ c v cm input voltage range g = 1, other input grounded l C14.8 14 C14.8 14 v cmrr common mode rejection ratio 1k source imbalance, v cm = C14.8v to 14v g = 1 l 78 db g = 10 l 96 91 db g = 100, 1000 l 100 100 db
8 lt1789-1/lt1789-10 1789f lt1789-1 lt1789-10 symbol parameter conditions min typ max min typ max units psrr power supply rejection ratio lt1789-1, v s = 1.25v to 16v lt1789-10, v s = 1.50v to 16v g = 1 l 92 db g = 10 l 102 98 db g = 100, 1000 l 104 104 db minimum supply voltage l 1.25 1.50 v i s supply current l 150 150 m a v o output voltage swing l 14.25 14.25 v sr slew rate v out = 10v l 0.010 0.026 v/ m s electrical characteristics the l denotes the specifications which apply over the temperature range of C40 c t a 85 c. v s = 15v, r l = 20k, v cm = v ref = 0v, unless otherwise noted. (note 4) the l denotes the specifications which apply over the temperature range of 0 c t a 70 c. v s = 15v, r l = 20k, v cm = v ref = 0v, unless otherwise noted. (note 4) lt1789-1 lt1789-10 symbol parameter conditions min typ max min typ max units gain error v o = 10v g = 1 l 0.20 % g = 10 (note 2) l 0.57 0.25 % g = 100 (note 2) l 0.57 0.62 % g = 1000 (note 2) l 0.62 0.67 % gain nonlinearity v o = 10v g = 1 l 30 ppm g = 10 l 20 50 ppm g = 100 l 30 50 ppm g = 1000 l 130 200 ppm g/t gain vs temperature g < 1000 (notes 2, 3) l 5 50 5 50 ppm/ c v ost total input referred offset voltage v ost = v osi + v oso /g v osi input offset voltage g = 1000 l 305 340 m v v osih input offset voltage hysteresis (notes 3, 5) l 830 830 m v v oso output offset voltage g = 1 l 1.3 4.2 mv v osoh output offset voltage hysteresis (notes 3, 5) l 50 120 400 1000 m v v osi /t input offset voltage drift (rti) (note 3) l 0.2 0.7 0.3 0.8 m v/ c v oso /t output offset voltage drift (note 3) l 1.5 5 8 22 m v/ c i os input offset current l 55na i os /t input offset current drift l 22pa/ c i b input bias current l 50 50 na i b /t input bias current drift l 35 35 pa/ c v cm input voltage range g = 1, other input grounded l C14.8 14 C14.8 14 v cmrr common mode rejection ratio 1k source imbalance, v cm = C14.8v to 14v g = 1 l 76 db g = 10 l 94 89 db g = 100, 1000 l 98 98 db
9 lt1789-1/lt1789-10 1789f lt1789-1 lt1789-10 symbol parameter conditions min typ max min typ max units psrr power supply rejection ratio lt1789-1, v s = 1.25v to 16v lt1789-10, v s = 1.50v to 16v g = 1 l 90 db g = 10 l 100 96 db g = 100, 1000 l 102 102 db minimum supply voltage l 1.25 1.50 v i s supply current l 160 160 m a v o output voltage swing l 14.15 14.15 v sr slew rate v out = 10v l 0.008 0.024 v/ m s electrical characteristics the l denotes the specifications which apply over the temperature range of C40 c t a 85 c. v s = 15v, r l = 20k, v cm = v ref = 0v, unless otherwise noted. (note 4) note 1: absolute maximum ratings are those values beyond which the life of a device may be impaired. note 2: does not include the effect of the external gain resistor r g . note 3: this parameter is not 100% tested. note 4: the lt1789c-1/ lt1789c-10 is guaranteed to meet specified performance from 0 c to 70 c and is designed, characterized and expected to meet these extended temperature limits, but is not tested at C40 c and 85 c. the lt1789i-1/ lt1789i-10 is guaranteed to meet the extended temperature limits. note 5: hysteresis in offset voltage is created by package stress that differs depending on whether the ic was previously at a higher or lower temperature. offset voltage hysteresis is always measured at 25 c, but the ic is cycled to 85 c i-grade (or 70 c c-grade) or C 40 c i-grade (0 c c-grade) before successive measurement. 60% of the parts will pass the typical limit on the data sheet. note 6: v s = 5v limits are guaranteed by correlation to v s = 3v and v s = 15v tests. note 7: v s = 3v limits are guaranteed by correlation to v s = 5v and v s = 15v tests. note 8: this parameter is not tested at v s = 3v on the lt1789-10 due to an increase in sensitivity to test system noise. actual performance is expected to be similar to performance at v s = 5v. typical perfor a ce characteristics uw supply current vs supply voltage input bias current vs temperature input bias current vs common mode input voltage total supply voltage (v) 0 20 supply current ( a) 30 50 60 70 120 90 10 20 25 1789 g01 40 100 110 80 515 30 35 40 125 c 25 c ?5 c temperature ( c) 50 ?5 ?5 input bias current (na) ?5 0 0 50 75 1789 g02 ?0 ? ?0 25 100 125 v s = 5v, 0v v cm = 2.5v common mode input voltage (v) 0 input bias current (na) ?8 ?4 ?0 4.5 1789 g03 ?2 ?6 ?0 ?6 ?2 ?4 ?8 ?0 1.5 2.5 3.5 1 0.5 0.5 5 2 3 4 v s = 5v, 0v v ref = 2.5v ?5 c 125 c 25 c 85 c (lt1789-1, lt1789-10)
10 lt1789-1/lt1789-10 1789f typical perfor a ce characteristics uw output voltage swing vs load current gain vs frequency common mode rejection ratio vs frequency slew rate vs temperature negative power supply rejection ratio vs frequency positive power supply rejection ratio vs frequency output impedance vs frequency overshoot vs capacitive load settling time to 0.01% vs output step (lt1789-1) output current (ma) output voltage swing?ourcing (v) output voltage swing?inking (v) 4.8 5.0 4.6 4.0 4.4 4.2 0.8 1.0 1.6 1.4 1.2 0.6 0 0.4 0.2 0.001 0.1 1 10 1789 g04 0.01 ?5 c ?5 c 25 c 25 c 125 c 125 c source sink v s = 5v, 0v v ref = 2.5v frequency (hz) 100 gain (db) 1k 10k 100k 1789 g05 g = 1000 g = 100 g = 10 80 70 60 50 40 30 20 10 ?0 ?0 0 g = 1 v s = 5v, 0v v ref = 2.5v temperature ( c) ?0 slew rate (v/ s) 0.045 25 1789 g06 0.030 0.020 ?5 0 50 0.015 0.010 0.050 0.040 0.035 0.025 75 100 125 v s = 5v, 0v v ref = 2.5v g = 1 r l = 20k rising falling frequency (hz) 100 10 40 common mode rejection ratio (db) 60 80 100 120 50 70 90 110 1k 20k 10k 1879 g07 v s = 5v, 0v v ref = 2.5v g = 100, 1000 g = 10 g = 1 frequency (hz) 10 negative power supply rejection ratio (db) 140 120 100 80 60 40 20 0 100 1k 20k 10k 1789 g08 v s = 5v, 0v v ref = 2.5v input referred g = 1000 g = 100 g = 10 g = 1 frequency (hz) 10 positive power supply rejection ratio (db) 140 120 100 80 60 40 20 0 100 1k 20k 10k 1789 g09 v s = 5v, 0v v ref = 2.5v input referred g = 100, 1000 g = 10 g = 1 frequency (hz) 10 output impedance ( ) 100 1k 10k 1k 10k 100k 1789 g10 1 100 v s = 5v, 0v v ref = 2.5v capacitive load (pf) 1 40 overshoot (%) 50 60 70 80 10 100 1000 1789 g11 30 20 10 0 90 100 v s = 5v, 0v v ref = 2.5v v out = 100mv p-p a v = 1 a v = 10 a v 3 100 settling time ( s) 0 output step (v) 10 8 6 4 2 0 ? ? ? ? ?0 400 1789 g12 100 200 300 500 v s = 15v r l = 20k g = 1
11 lt1789-1/lt1789-10 1789f voltage noise density vs frequency current noise density vs frequency 0.1hz to 10hz noise voltage, g = 1 0.1hz to 10hz noise voltage, rti, g = 1000 0.1hz to 10hz noise current turn-on characteristics typical perfor a ce characteristics uw (lt1789-1) frequency (hz) 1 10 voltage noise density (nv/ hz) 100 1000 10 100 1k 1789 g13 g = 100, 1000 g = 10 g = 1 v s = 5v, 0v v ref = 2.5v input referred frequency (hz) 1 10 current noise density (fa/ hz) 100 1000 10 100 1k 1789 g14 v s = 5v, 0v v ref = 2.5v lt1789-1 r s time (sec) 0 noise voltage (2 m v/div) 4 1789 g15 1 2 3 10 9 8 7 6 5 v s = 5v, 0v v ref = 2.5v time (sec) 0 noise voltage (0.5 m v/div) 4 1789 g16 1 2 3 10 9 8 7 6 5 v s = 5v, 0v v ref = 2.5v time (sec) 0 noise current (5pa/div) 4 1789 g17 1 2 3 10 9 8 7 6 5 v s = 5v, 0v v ref = 2.5v time (ms) 0 change in output voltage (v) 40 1789 g18 10 20 30 1.5 0.5 ?.5 ?.5 v s = 5v, 0v v ref = 2.5v v cm = 2.5v g = 1000 t a = 25 c
12 lt1789-1/lt1789-10 1789f output voltage swing vs load current gain vs frequency slew rate vs temperature common mode rejection ratio vs frequency negative power supply rejection ratio vs frequency positive power supply rejection ratio vs frequency overshoot vs capacitive load typical perfor a ce characteristics uw frequency (hz) 100 gain (db) 80 70 60 50 40 30 20 10 0 ?0 ?0 1k 10k 100k 1789 g22 g = 100 g = 10 g = 1000 v s = 5v, 0v v ref = 2.5v temperature ( c) ?0 slew rate (v/ s) 100 1789 g23 050 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.05 0.04 25 25 75 125 rising falling frequency (hz) 10 common mode rejection ratio (db) 120 110 100 90 80 70 60 50 40 100 1k 10k 20k 1789 g24 g = 10 g = 100, 1000 v s = 5v, 0v v ref = 2.5v frequency (hz) 10 negative power supply rejection ratio (db) 140 120 100 80 60 40 20 0 100 1k 10k 20k 1789 g25 g = 100 g = 10 g = 1000 v s = 5v, 0v v ref = 2.5v input referred frequency (hz) 10 positive power supply rejection ratio (db) 140 120 100 80 60 40 20 0 100 1k 10k 20k 1789 g26 g = 10 g = 100, 1000 v s = 5v, 0v v ref = 2.5v input referred frequency (hz) 10 output impedance ( ) 100 1k 10k 1k 10k 100k 1789 g27 1 100 v s = 5v, 0v v ref = 2.5v capacitive load (pf) 40 30 50 60 70 80 10 100 1000 1789 g28 20 10 0 90 100 overshoot (%) v s = 5v, 0v v ref = 2.5v v out = 100mv p-p g = 10 g = 100 g = 1000 settling time ( s) 0 output step (v) 10 8 6 4 2 0 ? ? ? ? ?0 400 1789 g29 100 200 300 500 v s = 15v r l = 20k g = 10 output impedance vs frequency settling time to 0.01% vs output step (lt1789-10) output current (ma) output voltage swing?ourcing (v) output voltage swing?inking (v) 4.8 5.0 4.6 4.0 4.4 4.2 0.8 1.0 1.6 1.4 1.2 0.6 0 0.4 0.2 0.001 0.1 1 10 1789 g21 0.01 ?5 c ?5 c 25 c 25 c 125 c 125 c source sink v s = 5v, 0v v ref = 2.5v
13 lt1789-1/lt1789-10 1789f voltage noise density vs frequency current noise density vs frequency 0.1hz to 10hz noise voltage, rti, g = 10 0.1hz to 10hz noise voltage, rti, g = 1000 0.1hz to 10hz noise current frequency (hz) 1 10 voltage noise density (nv/ hz) 100 1000 10 100 1k 1789 g30 g = 1000 g = 10 g = 100 v s = 5v, 0v v ref = 2.5v input referred frequency (hz) 1 10 current noise density (fa/ hz) 100 1000 10 100 1k 1789 g31 v s = 5v, 0v v ref = 2.5v lt1789-10 r s time (sec) 0 noise voltage (2 m v/div) 4 1789 g32 1 2 3 10 9 8 7 6 5 v s = 5v, 0v v ref = 2.5v time (sec) 0 noise voltage (0.5 m v/div) 4 1789 g33 1 2 3 10 9 8 7 6 5 v s = 5v, 0v v ref = 2.5v time (sec) 0 noise current (5pa/div) 4 1789 g34 1 2 3 10 9 8 7 6 5 v s = 5v, 0v v ref = 2.5v turn-on characteristics typical perfor a ce characteristics uw (lt1789-10) time (ms) 0 change in output voltage (v) 40 1789 g18 10 20 30 1.5 0.5 ?.5 ?.5 v s = 5v, 0v v ref = 2.5v v cm = 2.5v g = 1000 t a = 25 c
14 lt1789-1/lt1789-10 1789f 5v/div 500 m s/div large-signal transient response g = 1, 10, 100 1789-1 g38 5v/div 2ms/div v s = 15v r l = 20k c l = 50pf large-signal transient response g = 1000 1789-1 g39 v s = 15v r l = 20k c l = 50pf 20mv/div 100 m s/div v s = 5v, 0v v ref = 2.5v r l = 20k c l = 50pf small-signal transient response g = 1 1789-1 g40 typical perfor a ce characteristics uw 20mv/div 100 m s/div v s = 5v, 0v v ref = 2.5v r l = 20k c l = 50pf small-signal transient response g = 10 1789-1 g41 20mv/div 200 m s/div v s = 5v, 0v v ref = 2.5v r l = 20k c l = 50pf small-signal transient response g = 100 1789-1 g42 20mv/div 2ms/div v s = 5v, 0v v ref = 2.5v r l = 20k c l = 50pf small-signal transient response g = 1000 1789-1 g43 (lt1789-1)
15 lt1789-1/lt1789-10 1789f 20mv/div 200 m s/div v s = 5v, 0v v ref = 2.5v r l = 20k c l = 50pf small-signal transient response g = 100 1789-10 g47 20mv/div 2ms/div v s = 5v, 0v v ref = 2.5v r l = 20k c l = 50pf small-signal transient response g = 1000 1789-10 g48 typical perfor a ce characteristics uw (lt1789-10) 5v/div 500 m s/div large-signal transient response g = 10, 100 1789-10 g44 5v/div 500 m s/div v s = 15v r l = 20k c l = 50pf large-signal transient response g = 1000 1789-1 0 g45 v s = 15v r l = 20k c l = 50pf 20mv/div 100 m s/div v s = 5v, 0v v ref = 2.5v r l = 20k c l = 50pf small-signal transient response g = 10 1789-10 g46
16 lt1789-1/lt1789-10 1789f g = 1 input common mode voltage (v) ?5 valid output voltage (v) 15 10 5 0 ? ?0 ?5 ?0 ? 0 5 10 15 g = 1 g 3 2 g = 1 t a = 25 c input common mode voltage (v) ?.5 2.5 valid output voltage (v) input common mode voltage (v) valid output voltage (v) input common mode voltage (v) valid output voltage (v) 3.0 2.5 2.0 1.5 1.0 0.5 0 0.5 ?.0 ?.5 ?.0 ?.5 ?.5 1.5 0.5 0.5 a v = 1 t a = 25 c a v = 2 a v = 10 a v = 1 input common mode voltage (v) ?.5 valid output voltage (v) 1.5 1.0 0.5 0 0.5 ?.0 ?.5 ?.0 0.5 0 0.5 1.0 1.5 t a = 25 c a v = 2 a v = 10 + lt1789-1 v d /2 v d /2 v cm 15v ?5v 20k v out ref + lt1789-1 v d /2 v d /2 v cm 2.5v ?.5v 20k v out ref + lt1789-1 v d /2 v d /2 v cm 1.5v ?.5v 20k v out ref 0 5 4 3 2 1 0 4 1 2 3 5 0 0.5 1.5 2.5 3 2 1 0 1.0 2.0 3.0 g = 2 g = 10 g = 2 g = 10 1789 g49 1789 g50 1789 g51 + lt1789-1 v d /2 v d /2 v cm 3v 20k v out ref + lt1789-1 v d /2 v d /2 v cm 5v 20k v out ref 1789 g52 1789 g53 v + v v + v v + v v + v v + v t a = 25 c t a = 25 c typical perfor a ce characteristics uw (lt1789-1) valid output voltage vs input common mode voltage v s = 15v valid output voltage vs input common mode voltage v s = 5v valid output voltage vs input common mode voltage v s = 3v valid output voltage vs input common mode voltage v s = 2.5v valid output voltage vs input common mode voltage v s = 1.5v
17 lt1789-1/lt1789-10 1789f input common mode voltage (v) ?5 valid output voltage (v) 15 10 5 0 ? ?0 ?5 ?0 ? 0 0 5 10 15 t a = 25 c input common mode voltage (v) ?.5 2.5 valid output voltage (v) input common mode voltage (v) valid output voltage (v) input common mode voltage (v) valid output voltage (v) 2.5 2.0 1.5 1.0 0.5 0 0.5 ?.0 ?.5 ?.0 ?.5 ?.5 1.5 0.5 0.5 input common mode voltage (v) ?.5 valid output voltage (v) 1.5 1.0 0.5 0 0.5 ?.0 ?.5 ?.0 0.5 0 0.5 1.0 1.5 0 5 4 3 2 1 0 4 1 2 3 5 0 0.5 1.5 2.5 3 2 1 0 1.0 2.0 3.0 g = 10 1789 g54 1789 g55 1789 g56 1789 g57 1789 g58 a v = 10 a v = 100 a v = 10 g = 10 g = 100 g = 10 g = 100 g = 100 t a = 25 c t a = 25 c t a = 25 c t a = 25 c a v = 100 + lt1789-10 v d /2 v d /2 v cm 15v ?5v 20k v out ref + lt1789-10 v d /2 v d /2 v cm 2.5v ?.5v 20k v out ref + lt1789-10 v d /2 v d /2 v cm 1.5v ?.5v 20k v out ref + lt1789-10 v d /2 v d /2 v cm 3v 20k v out ref + lt1789-10 v d /2 v d /2 v cm 5v 20k v out ref v + v v + v v + v v + v v + v typical perfor a ce characteristics uw (lt1789-10) valid output voltage vs input common mode voltage v s = 15v valid output voltage vs input common mode voltage v s = 5v valid output voltage vs input common mode voltage v s = 3v valid output voltage vs input common mode voltage v s = 2.5v valid output voltage vs input common mode voltage v s = 1.5v
18 lt1789-1/lt1789-10 1789f figure 1. block diagram block diagra w + 3 1 a1 v v +in r g v + v + v v + v + 5.7k 100k r1 110k/10k* v b + 2 8 a2 v v v 1789 bd ?n r g v + v + 5.7k 100k r3 110k/10k* r2 110k/100k* r4 110k/100k* v b 6 out 7 v + 4 v 5 ref + a3 *lt1789-1/lt1789-10
19 lt1789-1/lt1789-10 1789f setting the gain the gain of the lt1789-1 and lt1789-10 is set by the value of resistor r g , applied across pins 1 and 8. for the lt1789-1, the gain g will be: g = 1+ 200k/r g and r g can be calculated from the desired gain by r g = 200k/(g C 1) for the lt1789-10, the gain g will be g =10 ? (1 + 200k/r g ) and r g can be calculated from the desired gain by r g = 200k/(0.1 ? g C 1) for the lowest achievable gain, r g may be set to infinity by leaving pins 1 and 8 open. input and output offset voltage the offset voltage of the lt1789-1/lt1789-10 has two components: the output offset and the input offset. the total offset voltage referred to the input (rti) is found by dividing the output offset by the programmed gain (g) and adding it to the input offset. at high gains the input offset applicatio s i for atio wu uu voltage dominates, whereas at low gains the output offset voltage dominates. the total offset voltage is: total input offset voltage (rti) = input offset + (output offset/g) total output offset voltage (rto) = (input offset ? g) + output offset reference terminal the output voltage of the lt1789-1/lt1789-10 (pin 6) is referenced to the voltage on the reference terminal (pin 5). resistance in series with the ref pin must be mini- mized for best common mode rejection. for example, a 22 w resistance from the ref pin to ground will not only increase the gain error by 0.02% but will lower the cmrr to 80db. output offset trimming the lt1789-1/lt1789-10 is laser trimmed for low offset voltage so that no external offset trimming is required for most applications. in the event that the offset needs to be adjusted, the circuit in figure 2 is an example of an optional offset adjust circuit. the op amp buffer provides a low impedance to the ref pin where resistance must be kept to a minimum for best cmrr and lowest gain error. + 10k 100 100 ?0mv 1789 f02 v v + 10mv 5 6 output 2 3 1 lt1880 10mv adjustment range + 2 ?n +in 1 8 3 r g ref lt1789-1/-10 figure 2. optional trimming of output offset voltage
20 lt1789-1/lt1789-10 1789f input bias current return path the low input bias current of the lt1789-1/lt1789-10 (19na) and the high input impedance (1.6g w ) allow the use of high impedance sources without introducing sig- nificant offset voltage errors, even when the full common mode range is required. however, a path must be provided for the input bias currents of both inputs when a purely differential signal is being amplified. without this path the inputs will float high and exceed the input common mode range of the lt1789-1/lt1789-10, resulting in a saturated input stage. figure 3 shows three examples of an input bias current path. the first example is of a purely differen- tial signal source with a 10k w input current path to ground. since the impedance of the signal source is low, only one resistor is needed. two matching resistors are needed for higher impedance signal sources as shown in the second example. balancing the input impedance im- proves both common mode rejection and dc offset. the need for input resistors is eliminated if a center tap is present as shown in the third example. figure 3. providing an input common mode current path 10k r g r g r g 1789 f03 thermocouple 200k microphone, hydrophone, etc 200k center-tap provides bias current return + lt1789-1/ lt1789-10 + lt1789-1/ lt1789-10 + lt1789-1/ lt1789-10 output voltage vs input common mode voltage all instrumentation amplifiers have limiting factors that can cause an output to be invalid (the output is not equal to the input differential voltage multiplied by the gain) even though the output appears to be operating in a linear region. limiting factors such as input voltage range and output swing can be easily measured, however, there are also internal nodes that can limit. these internal nodes cannot be measured externally and can lead to erroneous output readings. to ensure a valid output for a given input common mode voltage and input differential voltage, the following four limiting factors must be taken into consideration (refer to the block diagram): 1) the input voltage ranges of the input amplifiers a1 and a2. 2) the output swings of the input amplifiers a1 and a2 (internal nodes). applicatio s i for atio wu uu
21 lt1789-1/lt1789-10 1789f 3) the input voltage range of the output amplifier a3 (internal node). 4) the output swing of the output amplifier a3. these limits can be determined using the relationships below. 1)the input voltage range limits can be found in the electrical tables. 2)the output voltages of the input amplifiers a1 and a2 can be found by the following formulas: v out a1 = (v d /2)(g)(r1/r2) + v cm + 0.6v v out a2 = (Cv d /2)(g)(r1/r2) + v cm + 0.6v where v d is the input differential voltage and v cm is the input common mode voltage. the typical output swing limits for a1 and a2 can be found in the output swing vs load current typical performance curve, using r1 + r2 as the load resistance. this limitation usually becomes dominant when gain is taken in the input stage and the common mode input voltage is close to either supply rail. the lt1789-10 is less susceptible to this limiting factor because the gain is taken in the output stage. 3)the voltage on the inputs to the output amplifier a3 can be determined by the following formula: v in a3 = (v out a1 C v ref )(r2/(r1 + r2)) the input voltage range of a3 has the same input limits as the lt1789-1. this limiting factor is more prevalent with single supplies, where both the reference voltage and input common mode voltage are near v + . this is also more of a concern with the lt1789-10 because the ratio of r1:r2 is 1:10 instead of 1:1. 4)the output voltage swing limits are also found in the electrical tables. the output voltage vs input common mode voltage typical performance curves show the regions of operation for the three supply voltages specified. single supply operation there are usually two types of input signals that need to be processed; differential signals, like the output of a bridge or single ended signals, such as the output from a ther- mistor. both signals require special consideration when operating with a single supply. when processing differential signals , ref (pin 5) must be brought above the negative supply (pin 4) to allow the output to process both the positive and negative going input signal. the maximum output operating range is obtained by setting the voltage on the ref pin to half supply. this must be done with a low impedance source to minimize cmrr and gain errors. for single ended input signals, the ref pin can be at the same potential as the negative supply provided the output of the instrumentation amplifier remains inside the speci- fied operating range. this maximizes the output range, however the smallest input signal that can be processed is limited by the output swing to the negative supply. applicatio s i for atio wu uu
22 lt1789-1/lt1789-10 1789f typical applicatio s u single supply positive integrator + 3 v in v out 8 1 2 3 4 4 5 6 r1 10k c1 100 f r2 10 reset 1789 ta02 v s = 2.7v to 32v time constant = (r1)(c1) = 1 second as shown 7 v s + 1 2 v s lt1636 + lt1789-1 ref avalanche photo diode module bias current monitor output 0v to 1v = 0ma to 1ma 5v + 5v a1 lt1789-1 3.5v 0.2 f s1 0.2 f v out = 20v to 90v to apd for optional ?ero current?feedback to apd bias regulator, see appendix a, application note 92 apd high voltage bias input an92 f04 1k* 1% 100k* + 5v a2 lt1006 3.5v 100k* q1 1m* 1m* q2 mpsa42 5v s3 s2 20k 15 16 17 4 3 18 5 2 6 12 13 14 22 f 22 f ?.5v to amplifiers 0.056 f 5v 20k* 20k 200k* 1 f 1 f 1 f 100v 1 f 100v 30k 10k 1n4690 5.6v # = 1n4148 = 0.1% metal film resistor = tecate cmc100105mx1825 = ltc1043 pin number = tp0610l * 1 f 100v circled numbers + + ? for more information refer to application note 92
23 lt1789-1/lt1789-10 1789f package descriptio n u information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no represen- tation that the interconnection of its circuits as described herein will not infringe on existing patent rights. .016 ?.050 (0.406 ?1.270) .010 ?.020 (0.254 ?0.508) 45 0 ?8 typ .008 ?.010 (0.203 ?0.254) so8 0303 .053 ?.069 (1.346 ?1.752) .014 ?.019 (0.355 ?0.483) typ .004 ?.010 (0.101 ?0.254) .050 (1.270) bsc 1 2 3 4 .150 ?.157 (3.810 ?3.988) note 3 8 7 6 5 .189 ?.197 (4.801 ?5.004) note 3 .228 ?.244 (5.791 ?6.197) .245 min .160 .005 recommended solder pad layout .045 .005 .050 bsc .030 .005 typ inches (millimeters) note: 1. dimensions in 2. drawing not to scale 3. these dimensions do not include mold flash or protrusions. mold flash or protrusions shall not exceed .006" (0.15mm) s8 package 8-lead plastic small outline (narrow .150 inch) (reference ltc dwg # 05-08-1610)
24 lt1789-1/lt1789-10 1789f part number description comments ltc1100 precision chopper-stabilized instrumentation amplifier best dc accuracy lt1101 precision, micropower, single supply instrumentation amplifier fixed gain of 10 or 100, i s < 105 m a lt1102 high speed, jfet instrumentation amplifier fixed gain of 10 or 100, 30v/ m s slew rate lt1167 single resistor gain programmable, gain error: 0.08% max, gain nonlinearity: 10ppm max, precision instrumentation amplifier 60 m v max input offset voltage, 90db min cmrr lt1168 low power, single resistor programmable instrumentation amplifier i supply = 530 m a max ltc ? 1418 14-bit, low power, 200ksps adc with serial and parallel i/o single supply 5v or 5v operation, 1.5lsb inl and 1lsb dnl max lt1460 precision series reference micropower; 2.5v, 5v, 10v versions; high precision lt1468 16-bit accurate op amp, low noise fast settling 16-bit accuracy at low and high frequencies, 90mhz gbw, 22v/ m s, 900ns settling ltc1562 active rc filter lowpass, bandpass, highpass responses; low noise, low distortion, four 2nd order filter sections ltc1605 16-bit, 100ksps, sampling adc single 5v supply, bipolar input range: 10v, power dissipation: 55mw typ lt/tp 0403 2k ? printed in usa ? linear technology corporation 2002 related parts linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 l fax: (408) 434-0507 l www.linear.com voltage controlled current source i l r1 1k load 1789 ta03 6 3v to 32v r g i l = a v ?v in /r1 a v = 1 + 200k r g 3 v in 8 1 2 4 5 7 + lt1789-1 ref 3 8 1 1 2 2 4 46 5 6 7 v s + v s + + lt1789-10 36.5k 0.5% 866k 1% 56.2k 1% 100k @ 25 c thermistor thermometrics dc95g104v lt1790 ?.25 1789 ta04 29.4k 1% v out = 2.5v at 25 c + 50mv/ c over 10 c to 40 c linearity = 0.3 c accuracy = 1 c worst case tolerance stack-up v s + = 4v to 18v 10 c to 40 c thermometer typical applicatio s u


▲Up To Search▲   

 
Price & Availability of LT1789IS8-10

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X